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COMMENT 
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Abstract. A new class of planar fractals called the Pascal-Sierpinski gaskets is described, 
of which the well known Sierpinski gasket is a special case. Some of these gaskets are true 
Mandelbrot fractals possessing non-integral dimensions as well as self-similarity; the 
remaining ones are not self-similar, but appear to have non-integral dimensions. 

Physics, in general, until recently has been greatly limited in its scope by the use of 
Euclidean geometry whereby all bodies possess integral dimensionality ranging from 
0 to 3. But, to quote from the cover flap of Mandelbrot’s celebrated work (1983), ‘all 
clouds are not spheres, mountains are not cones, and lightning does not travel in a 
straight line’. The forms exhibited by nature differ so much from Euclidean objects 
that an entirely new geometry has had to be applied, principally by Mandelbrot himself 
(1983) but also by several others (e.g. Lovejoy 1982, Berry 1982, Walker and Jakeman 
1982, Yehoda and Messier 1985). The relatively huge amount of effort put forth in 
the last few years has resulted in the identification of several natural shapes which are 
now known as fractals. 

Fractals are bodies characterised by several properties. Among the more notable 
ones are their possession of non-integral or fractional dimensionality and self-similarity. 
Natural fractals are found to be scale-invariant over several length scales (Yehoda and 
Messier 1985), whereas strictly geometric fractals are scale-invariant over all possible 
appropriate scales. An adequate discussion of these and other properties of fractals 
can be found elsewhere (Mandelbrot 1983), for which reason they will not be reviewed 
in any detail here. 

Though natural fractals occur in any landscape and in such ‘random’ structures as 
thin films and are, as a result, probably more familiar, strictly geometric fractals are 
not of solely academic interest. The Sierpinski gasket (fractal dimension = log 3/log 2), 
which has been paid a great deal of attention by Mandelbrot (1983), is a geometric 
fractal of interest in percolation morphology studies. In studying percolation through 
lattices, it was observed by Gefen et a1 (1980, 1981) that the branching structure of 
the Sierpinski gasket (and of its three- and four-dimensional analogues) proves to be 
a promising model of the structure of the cluster backbones. Recent work on the 
Sierpinski gasket has also been reported by Stephen (1981), Rammal and Toulouse 
(1982) as well as by Alexander and Orbach (1982). 
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In this comment the authors are primarily concerned with describing a new class 
of geometric fractals which can be derived from the well known Pascal's triangle, and 
of which the Sierpinski gasket is a special case. It will be shown here that with the 
complete (i.e. infinitely large) Pascal's triangle as a base, fractal surfaces ranging up 
to a dimension of 2.0 can be constructed; the unaltered Pascal's triangle being of 
exactly 2.0 dimensionality. Several other structures also emerge which do not possess 
self-similarity in a strict sense, but which appear to have non-integral dimensionality. 

Pascal's triangle constitutes an equiangular triangular grid whose rows shall be 
labelled by n = 1,2,3,  . . . , each row containing n nodes {n, p , , } ,  p,, = 1 , 2 , 3 , .  . . , n. 
Attached to each of the nodes on this triangular grid is a number "Cpn = 
( n  - l)! /[(n - p n ) ! ( p n  - l)!] ,  which are nothing but thep,,th coefficients of the binomial 
expansion of (x+  y)"- ' .  As is readily seen, the triangular grid thus formed is infinitely 
large, the numbers "Cpn growing without bounds as n increases. Incidentally, "C, = 
"C,,=1. An extensive table of these numbers can be found in a handbook by 
Abramowitz and Stegun (1970). 

The fractals to be described here can be evolved from any truncated Pascal's triangle 
of a suitably large size and they shall be referred to as the Pascal-Sierpinski gaskets 
hereafter. The algorithm for generating them now follows. 

First of all, a label 'Lp,  is attached to each of the nodes { n, p, , } .  Any integer N > 1 
may now be chosen, and the labels "Lpn are defined by 

,,Lp, = 1 

,,Lpn = 0 

if "Cpn is not exactly divisible by N 

if 'CPm is exactly divisible by N. 

( l a )  

(16) 

and 

The resulting map of the labels "Lpn superimposed on the triangular grid constitutes 
a Pascal-Sierpinski gasket of order N. It will now be shown that the gaskets thus 
formed may be considered as fractals. 

Let each of the nodes in this map be treated as having a mass "Lpn. The grid will 
contain several voids and several filled areas, and figures 1-5 show the generated 
gaskets when 1 G n s 64, while N varies from 2 to 6. 

Inspection of these gaskets shows that when N is a prime number, they are 
self-similar in the Mandelbrot sense. Their fractal (similarity) dimension d, can then 
be easily computed to be 

dN = log{ N (  N + 1)/2}/10g{ N }  ( 2 )  

hnN+m{ dN} = 2 N prime. (3) 

N prime 

which turns out to be 1.5849625 for N = 2 ,  and 

Furthermore, for N = 2 ,  the gasket generated is nothing but the Sierpinski gasket 
(Mandelbrot 1983). 

Next come the cases when N is an integral power of a prime number. In such 
cases, as in figure 3 for N = 4 = 2*, visual inspection alone suffices to show that the 
resulting gaskets are self-similar. However, a simple formula like ( 2 )  for the fractal 
dimension dN could not be deduced by the authors for these cases. 

Finally we look at the cases for all other values of N > 1, when N is neither a 
prime nor an integral power of a prime, as in figure 6 for N = 6 = 2 x 3. Visual inspection 
extended up to n = 198 rows did not show any self-similarity in these gaskets. However, 
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Figure 1. The Pascal-Sierpinski gasket of order N = 2. Shown are the first n = 64 rows of 
the gasket. The graph alongside plots the mass-radius variation for this gasket when the 
first n = 1000 rows have been considered. The coordinate ranges are 0 C log,v{ mN( r ) }  S 20.0 
and 0 C log,{ r }  c 10.0. 

Figure 2. The Pascal-Sierpinski gasket of order N = 3. Shown are the first n = 64 rows of 
the gasket. The graph alongside plots the mass-radius variation for this gasket when the 
first n = 1000 rows have been considered. The coordinate ranges are O S  log,v{ mN( r ) }  s 10.0 
and OSlog ,{r}~7.0 .  
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Figure 3. The Pascal-Sierpinski gasket of order N = 4. Shown are the first n = 64 rows of 
the gasket. The graph alongside plots the mass-radius variation for this gasket when the 
first n = 1000 rows have been considered. The coordinate ranges are 0 s  Log,{m,(r)} G 10.0 
and O ~ l o g N { r } S 5 . 0 .  

Figure 4. The Pascal-Sierpinski gasket of order N = 5 .  Shown are the first n = 64 rows of 
the gasket. The graph alongside plots the mass-radius variation for this gasket when the 
first n = loo0 rows have been considered. The coordinate ranges are O S  logN{mN(r)}S 8.0 
and 0 log,{ r }  G 5.0. 
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Figure 5. The Pascal-Sierpinski gasket of order N = 6. Shown are the first n = 64 rows of 
the gasket. The graph alongside plots the mass-radius variation for this gasket when the 
first n = 1000 rows have been considered. The coordinate ranges are 0 s log,{ mN(  r ) }  s 8.0 
and 0 s log,v{ r }  s 4.0. 

if the factorisation 

N = IIi( j i )k l  = IIiNi (4) 

is made, where all k, are real positive integers and all ji are primes, then the gasket 
of order N can be synthesised from the gaskets of orders Ni by the operation 

gasket{ N}  = gasket{ N,}Ogasket{ N,}Ogasket{ N3}0.  . . ( 5 )  

where 0 denotes an OR operation (Baron and Piccirilli 1967). The operation OR 
between any two gaskets of orders N, and Nj is performed by overlaying one on top 
of the other such that their like-numbered nodes coincide exactly. Then for each node 
{n ,  p n }  of the resulting overlay, the resulting label is given by 

“Ep,{  N,O N,} = nLp,{ Ni}O “Lpn{N,}  ( 6 a )  

1 0 1 = 1  l o o =  1 ,  o o 1 = 1  o o o = o  (66) 

where the familiar rules of Boolean algebra 

apply. Because of ( 5 )  it is conjectured that this last class of the Pascal-Sierpinski 
gaskets should also possess fractal dimensions, though they are not self-similar. 

Since a fairly general method of determining the fractal dimension d ,  was needed, 
in view of the fact that the formula ( 2 )  is applicable only for prime N, the mass-radius 
fractal dimension DN was determined for the gaskets of figures 1-5. As has been 
mentioned earlier, each of the nodes in the gaskets was given a mass “Lp,, while the 
node (1, 1) was treated as the datum point for measurement of the distance r. Since 
the triangular grid is equiangular and its rows equispaced, the nearest-neighbour 
distance between the nodes was taken to be unity. It may be noted that if these gaskets 
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are not fractal, then D, = 2.0 should result from such a procedure; if, however, they 
are, then DN should converge to d ,  1.0 < d ,  S 2.0, as their truncation levels are 
increased. Measurements were made by sweeping out 60" wide symmetric arcs of 
increasing radii r from the datum node, the sum of the labels "Lpn covered in the sector 
giving the mass m N ( r )  of the sectoral plates thus formed. These computations were 
made for all gaskets or orders N=2-5 ,  with the number of rows set to be ns198 ,  
500 and 1000. Also shown in figures 1-5 are the plots of logN{mN(r)) against log,{r} 
for the gaskets truncated at n = 1000. Finally, through each of these plots a straight 
line was fitted, using a least-squares curve-fitting procedure (Worthing and Geffner 
1948), for reasonably high values of log,{r}. The slope of this line is the mass-radius 
dimension DN. 

It is observed from table 1, where the computed DN are given, that as the truncation 
level of the Pascal-Sierpinski gaskets is increased, the dimension D N  appears to be 
converging towards the 'expected' fractal dimension dN for prime N. Likewise, even 
for the other cases of non-prime A', these data clearly suggest the existence of a fractal 
dimension. 

The number of massless points for each of the five gaskets considered at levels of 
truncation n = 198, 500 and 1000 are shown in table 2 .  A comparison of tables 1 and 
2 reveals that D,< D5 < Db,  even though the order 5 gasket contains more massless 
nodes than the gaskets of orders 4 or 6 .  Normally, one would expect that a larger 
number of massless nodes should give rise to a smaller Dhr; yet this is not the case 
here. And, although the gasket of order 6 is not self-similar, the other two are. This 
feature, that the larger number of voids is not related to a smaller mass-radius 
dimension, appears to be due to the differences in the textures of the pertinent gaskets 
(Mandelbrot 1983). 

Table 1. Mass-radius dimension LIW. 

D N  

Order N nG198 n s 500 n s 1000 d h  

2 1.5681 1.5716 1.5738 1.584 96 
3 1.6134 1.6138 1.6218 1.630 93 
4 1.6567 1.6617 1.6688 
5 1.6645 1.6688 1.669 1 1.682 61 
6 1.6780 1.6712 1.6693 

Table 2. Number of massless nodes against total number of nodes. 

Number of massless nodes/total number of nodes 

Order N ns198 nc5w n s 1000 

2 15 996/19 701 107871/125250 448 363/500 500 
3 14949/19 701 101742/125250 437420/500500 
4 12 953/19 701 91495/125250 393 442/500 500 
5 13 896/19701 91500/125250 409375/500500 
6 12393/19701 88 766/ 125 250 395000/500500 
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In summary, a class of gaskets named after Pascal and Sierpinski has been described 
here, of which the Sierpinski gasket (Mandelbrot 1983) is a special case. It is shown 
that the mass-radius dimensions of these gaskets are fractions greater than unity but 
less than 2.0. Furthermore, some of these gaskets are self-similar and thus form true 
Mandelbrot fractals. Conceivably, these gaskets are of use in modelling percolation 
clusters. 

This work was supported by the US Air Force Office of Scientific Research under 
Contract No AFOSR-84-0149. 
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